

Culture Independent Diagnostic Tests for Gastroenteritis

Mir H. Noorbash, PhD, D(ABMM), SM, MB (ASCP) Scientific Director, Microbiology & Molecular Associate Medical Director Sutter Health Shared Laboratory

PAMET, October 2019

Conflict of interests

- Advisory board:
 - DiaSorin[®]
 - QIAGEN[®]
 - Triple Ring Technologies Inc.
- Speaker sponsorship Luminex®
- Instrument user:
 - BioFire: Torch, DiaSorin: Liaison, Hologic: Panther, Luminex: Verigene, Aries, QIAGEN: QIA Symphony

Objectives

- Gastroenteritis: clinical presentation, common causes
- IDSA guidelines for diarrheal illnesses
- Conventional diagnostic methods in acute gastroenteritis
- CIDT's for stool pathogens
- Financial factors

Gastroenteritis & Diarrheal Illnesses

- 2nd leading cause of infectious diseases morbidity
- 3rd leading cause of mortality
 - 1.4 million deaths in 2010¹
- 2 billion New Cases/year of diarrhea worldwide², resulting in 1.9 million death for children <5 years³.
- 179 million cases/year in the US⁴

- 1. Mandell's Principals of Infectious Diseases, 2015
- 2. WHO
- 3. Farthing et al., 2013
- 4. DuPont, in NEJM 2014

Infectious Diarrhea

• Definition:

- ≥3 unformed stools within 24 hours AND
- Enteric symptoms (nausea, vomiting, pain, cramps,...)
- Severity:
 - \circ Mild
 - Moderate
 - \circ Severe
- Duration:
 - Acute <14 days
 - Persistent 14-30 days
 - Chronic >30 days

Top 5 Most Frequent Pathogens

Numbers of acute gastroenteritis outbreaks and outbreak-associated outcomes caused by various etiologic agents reported in the National Outbreak Reporting System, United States, 2009–2010*

	No. (%) outbreaks Confirmed Suspected Total		No. (%) outbreak-associated outc		tcomes	
Outbreak etiology			Total	Illnesses	Hospitalizations	Deaths
Single agent†						
Norovirus‡	1,355 (64.2)	553 (78.1)	1,908 (67.7)	69,145 (77.7)	1,093 (45.9)	125 (85.6)
Salmonella spp.	344 (16.3)	11 (1.6)	355 (12.6)	8,590 (9.7)	773 (32.5)	6 (4.1)
Shigella spp.§	99 (4.7)	10 (1.4)	109 (3.9)	2,135 (2.4)	115 (4.8)	1 (0.7)
STEC	88 (4.2)	13 (1.8)	101 (3.6)	1,091 (1.2)	250 (10.5)	9 (6.2)
Campylobacter spp.¶	56 (2.7)	13 (1.8)	69 (2.4)	1,550 (1.7)	52 (2.2)	0

Emerg Infect Dis. 2013 Aug; 19(8): 1305–1309

Most Frequent Pathogens - caused 92.7% of the illnesses

Numbers of acute gastroenteritis outbreaks and outbreak-associated outcomes caused by various etiologic agents reported in the National Outbreak Reporting System, United States, 2009–2010*

	No. (%) outbreaks		No. (%) outbreak-associated outcomes			
Outbreak etiology	Confirmed	Suspected	Total	Illnesses	Hospitalizations	Deaths
Single agent†						
Norovirus‡	1,355 (64.2)	553 (78.1)	1,908 (67.7)	69,145 (77.7)	1,093 (45.9)	125 (85.6)
Salmonella spp.	344 (16.3)	11 (1.6)	355 (12.6)	8,590 (9.7)	773 (32.5)	6 (4.1)
Shigella spp.§	99 (4.7)	10 (1.4)	109 (3.9)	2,135 (2.4)	115 (4.8)	1 (0.7)
STEC	88 (4.2)	13 (1.8)	101 (3.6)	1,091 (1.2)	250 (10.5)	9 (6.2)
Campylobacter spp.¶	56 (2.7)	13 (1.8)	69 (2.4)	1,550 (1.7)	52 (2.2)	0

Emerg Infect Dis. 2013 Aug; 19(8): 1305–1309

Most Frequent Pathogens - caused 96.6% of deaths

Numbers of acute gastroenteritis outbreaks and outbreak-associated outcomes caused by various etiologic agents reported in the National Outbreak Reporting System, United States, 2009–2010*

	No. (%) outbreaks		No. (%) outbreak-associated outcome			
Outbreak etiology	Confirmed	Suspected	Total	Illnesses	Hospitalizations	Deaths
Single agent†						
Norovirus‡	1,355 (64.2)	553 (78.1)	1,908 (67.7)	69,145 (77.7)	1,093 (45.9)	125 (85.6)
Salmonella spp.	344 (16.3)	11 (1.6)	355 (12.6)	8,590 (9.7)	773 (32.5)	6 (4.1)
Shigella spp.§	99 (4.7)	10 (1.4)	109 (3.9)	2,135 (2.4)	115 (4.8)	1 (0.7)
STEC	88 (4.2)	13 (1.8)	101 (3.6)	1,091 (1.2)	250 (10.5)	9 (6.2)
Campylobacter spp.¶	56 (2.7)	13 (1.8)	69 (2.4)	1,550 (1.7)	52 (2.2)	0

Emerg Infect Dis. 2013 Aug; 19(8): 1305–1309

Most Frequent Pathogens

Percentage of outbreaks of acute gastroenteritis transmitted by person-to-person contact, environmental contamination, and unknown mode of transmission by confirmed etiology — National Outbreak Reporting System, United States, **2009–2013**

[MMWR, Dec. 11 2015 / 64]

Mode of transmission

s You https://www.cdc.gov/mmwr/preview/mmwrhtml/ss6412a1.htm?s_cid=ss6412a1_w#Tab1

Symptoms

Nat'l Outbreak Reporting (2009 – 2013): MMWR Surveill Summ. 2015 Dec 11;64(12):1-16.

IDSA – Infectious Diarrhea Diagnosis

Clinical Infectious Diseases

IDSA GUIDELINE

2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea

Andi L. Shane, MD¹ Rajal K. Mody, MD² John A. Crump, MD³ Phillip I. Tarr,⁴ Theodore S. Steiner, MD⁵ Karen Kotloff, MD⁶ Joanne M. Langley, MD⁷ Christine Wanke, MD⁸ Cirle Alcantara Warren, MD⁹ Allen C. Cheng, PhD¹⁰ Joseph Cantey, MD¹¹ and Larry K. Pickering, MD¹²

¹Division of Infectious Diseases, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia; ²Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; ³Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina; Centre for International Health, University of Otago, Dunedin, New Zealand; ⁴Division of Gastroenterology, Hepatology, and Nutrition, Washington University in St. Louis School of Medicine, St. Louis, MO; ⁵Nutrition, Washington University in St. Louis School of Medicine, St. Louis, MO; ⁵Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada; ⁶Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, and the Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD; ⁷Department of Pediatrics, Dalhousie University, Halifax, NS; ⁸Division of Nutrition and Infection, Tufts University, Boston, Massachusetts, Cirle Alcantara Warren, MD; ⁹Division of Infectious Diseases, Department of Pediatrics Diseases, Department of Pediatrics, Beattimert of School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia, ¹¹Division of Infectious Diseases, Department of Pediatrics, Emory University, Atlanta, Georgia

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80

Who Should be Tested?

- Test should be done if:
 - History of illness
 - Travel
 - Long-term care
 - Childcare
 - Healthcare Associated (HCA)
 - Immunocompromised
 - Zoonoses, Outbreak-associated, or Public Health risk
 - Severe Diarrhea
 - Fever, dehydration, dysentery
 - > 7 Days^{1,2} or persistent

- 1. Riddle MS, in AJG April 2016
- 2. Clin Infect Dis. 2017 Nov 29;65(12):e45-e80. IDSA guidelines

IDSA – What Specimens Should be Tested?

• "The optimal specimen for laboratory diagnosis of infectious diarrhea is a **diarrheal stool sample** (i.e., a sample that takes the shape of the container). For detection of bacterial infections, if a timely diarrheal stool sample cannot be collected, a rectal swab may be used (weak, low)."

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80

IDSA – What Specimens Should be Tested?

- "The optimal specimen for laboratory diagnosis of infectious diarrhea is a diarrheal stool sample (i.e., a sample that takes the shape of the container). For detection of bacterial infections, if a timely diarrheal stool sample cannot be collected, a rectal swab may be used (weak, low)."
 - Diarrheal Stool
 - Rectal Swab

IDSA – Target Oriented Testing

- Organism detection depends on what pathogens and test are considered
- Factors that determine tests and targets are:
 - History (exposure)
 - Clinical presentation (signs and symptoms)
 - Immune status

IDSA: Test for pathogens based on condition

Condition	Target	
Severe Cramping/Tenderness, Fever, Bloody or Mucoid stool, Sepsis?	Salmonella, Shigella, Campylobacter, Yersinia, STEC, C. difficile*	
 Children w/ persistent abdominal pain, exposure to pork products Travel to endemic region or Shellfish consumption 	Yersinia enterocoliticaVibrio	
Possibility of Outbreaks	Broad Panel (bacterial, viral, parasitic)	
Immunocompromised	Broad Panel (bacterial, viral, parasitic)	
Uncomplicated Traveler's Diarrhea, which treatment is not indicated	Testing not recommended	
Traveler's Diarrhea >14 days	Parasites	
	* usually not bloody.	

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80

IDSA – Who Should be Treated?

• "In immunocompetent children and adults, empiric antimicrobial therapy for bloody diarrhea while waiting for results of investigations is **not** recommended (strong, low)."

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80.

IDSA – Who Should be Empirically Treated?

- "In immunocompetent children and adults, empiric antimicrobial therapy for bloody diarrhea while waiting for results of investigations is **not** recommended (strong, low)."
- Exceptions:
 - \circ <3 months old
 - High severity
 - Fever
 - Abdominal pain
 - Dysentery (bloody stool, cramps, tenesmus, fever ...)
 - \circ Recent travel history
 - Fever
 - Signs of sepsis
 - Immunocompromised
 Sutter Health We Plus You

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80

IDSA – Who Should be Treated?

- Usually has fever and bloody diarrhea
- Any signs or symptoms of sepsis
- Epidemiological or travel link
- Immunocompromised with severe illness
- Shigella
- Some *Campylobacter* and *Salmonella*

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80

IDSA – Testing for Parasites [Exposure or Condition Associated with Pathogens]

Sutter Health We Plus You

Swimming in recreational water facility with treated wa	ter <i>Cryptosporidium</i> and other potentially waterborne pathogens when disinfectant concentra- tions are inadequately maintained
Healthcare, long-term care, prison exposure, or employ	ment Norovirus, Clostridium difficile, Shigella, Cryptosporidium, Giardia, STEC, rotavirus
Child care center attendance or employment	Rotavirus, <i>Cryptosporidium, Giardia, Shigella</i> , STEC
Recent antimicrobial therapy	C. difficile, multidrug-resistant Salmonella
Travel to resource-challenged countries	<i>Escherichia coli</i> (enteroaggregative, enterotoxigenic, enteroinvasive), <i>Shigella</i> , Typhi and nontyphoidal <i>Salmonella, Campylobacter, Vibrio cholerae</i> , <mark>Entamoeba histolytica, Giardia</mark> , Blastocystis, Cyclospora, Cystoisospora, Cryptosporidium
Exposure to house pets with diarrhea	Campylobacter, Yersinia
Exposure to pig feces in certain parts of the world	Balantidium coli
Contact with young poultry or reptiles	Nontyphoidal Salmonella
Visiting a farm or petting zoo	STEC, Cryptosporidium, Campylobacter
Exposure or condition	
Age group	Rotavirus (6–18 months of age), nontyphoidal <i>Salmonella</i> (infants from birth to 3 months of age and adults >50 years with a history of atherosclerosis), <i>Shigella</i> (1–7 years of age), <i>Campylobacter</i> (young adults)
Underlying immunocompromising condition	Nontyphoidal Salmonella, Cryptosporidium, Campylobacter, Shigella, Yersinia
Hemochromatosis or hemoglobinopathy	Y. enterocolitica, Salmonella
AIDS, immunosuppressive therapies	Cryptosporidium, Cyclospora, Cystoisospora, microsporidia, Mycobacterium avium-intercellu-

IDSA – Testing for Parasites

- Travel to resource-challenged area
- AIDS and immunosuppressive therapy
- Swimming in treated water
 - Cryptosporidium
- Childcare related
 - Cryptosporidium, Giardia
- $\circ~$ Underlying immunocompromised condition
 - Cryptosporidium
- Anal-genital, oral-anal, digital-anal contact
 - E. histolytica, Giardia, Cryptosporidium

IDSA – Testing for Parasites

Travel to resource challenged area

 – "… Entamoeba histolytica, Giardia, Blastocystis, Cyclospora, Cystoisospora, Cryptosporidium …"

"Travelers with diarrhea lasting 14 days or longer should be evaluated for intestinal parasitic infections (strong, moderate)."

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80.

IDSA – Testing for Parasites

- Travel to resource challenged area
- AIDS and Immunosuppressive Therapy
 - "Cryptosporidium, Cyclospora, Cystoisospora, microsporidia
 "

Clin Infect Dis. 2017 Nov 29;65(12):e45-e80.

How important are **molecular** tests for parasites?

Exposure or condition	Expected parasite(s)
Foodborne outbreaks in hotels, cruise ships, resorts, restaurants, catered events	Cryptosporidium, Cyclospora
Consumption of unpasteurized milk or dairy	Cryptosporidium
Consumption of fruits or unpasteurized fruit juices, vegetables, leafy greens, and sprouts	Cryptosporidium, Cyclospora
Swimming in or drinking untreated fresh water	Cryptosporidium, Giardia
Swimming in recreational water facility with treated water	Cryptosporidium
Childcare center, healthcare, long-term care, prison exposure, or employment	Cryptosporidium, Giardia
Travel to resource-challenged countries	Cryptosporidium, Giardia, Cyclospora, Cystoisospora, Blastocystis
Exposure to pig feces in certain parts of the world	Balantidium coli
Visiting a farm or petting zoo	Cryptosporidium
Underlying immunocompromising condition	Cryptosporidium
AIDS, immunosuppressive therapies	Cryptosporidium, Giardia, Cyclospora, Cystoisospora, Microsporidia
Anal-genital, oral-anal, or digital-anal contact	Cryptosporidium, Giardia, E. histolytica

IDSA – C. difficile Testing

Clinical Infectious Diseases

IDSA GUIDELINE

Clinical Practice Guidelines for *Clostridium difficile* Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)

L. Clifford McDonald,¹ Dale N. Gerding,² Stuart Johnson,^{2,3} Johan S. Bakken,⁴ Karen C. Carroll,⁵ Susan E. Coffin,⁶ Erik R. Dubberke,⁷ Kevin W. Garey,⁸ Carolyn V. Gould,¹ Ciaran Kelly,⁹ Vivian Loo,¹⁰ Julia Shaklee Sammons,⁶ Thomas J. Sandora,¹¹ and Mark H. Wilcox¹²

¹Centers for Disease Control and Prevention, Atlanta, Georgia; ²Edward Hines Jr Veterans Administration Hospital, Hines, and ³Loyola University Medical Center, Maywood, Illinois; ⁴St Luke's Hospital, Duluth, Minnesota; ⁵Johns Hopkins University School of Medicine, Baltimore, Maryland; ⁶Children's Hospital of Philadelphia, Pennsylvania; ⁷Washington University School of Medicine, St Louis, Missouri; ⁸University of Houston College of Pharmacy, Texas; ⁹Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; ¹⁰McGill University Health Centre, McGill University, Montréal, Québec, Canada; ¹¹Boston Children's Hospital, Massachusetts; and ¹²Leeds Teaching Hospitals NHS Trust, United Kingdom

Clin Infect Dis. 2018 Mar 19:66(7)

C. difficile Infection (CDI) Definition

• Symptoms:

- Diarrhea (usually)
 - Unexplained (e.g., exclude laxatives)
 - New-onset
 - <u>></u>3 within 24 hours
 - Unformed stool
- Tests:
 - Detection of C. difficile toxins
 - Detection of Toxigenic C. difficile
 - Colonoscopy
 - Histopathology

IDSA – When Should We Test for *C. difficile*?

1. *"VI. When should testing be performed for Clostridium difficile? Recommendation.*

18. Testing may be considered for *C. difficile* in people >2 years of age who have a history of diarrhea following antimicrobial use and in people with healthcare-associated diarrhea." ¹

 "Patients with unexplained and new-onset ≥3 unformed stools in 24 hours are the preferred target population for testing for CDI."²

- 1. Clin Infect Dis. 2017 Nov 29;65(12):e45-e80.
- 2. Clin Infect Dis. 2018 Mar 19:66(7)

When Should We Test for *C. difficile*?

- >2 years old
- History of antimicrobial use
- Healthcare-associated diarrhea
- Persistent with no apparent etiology or risk factor
- Test only once
- Testing either toxin (EIA?) or toxigenic strain (NAAT) are acceptable

Clin Infect Dis. 2018 Mar 19:66(7)

Sutter Health System (SHS)

2nd largest Northern-California health system

- Not-for-profit
- Serving >100 communities
- 24 acute care hospital systems
- 26 clinics, medical foundations
- 40,000 physicians

Sutter Health Shared Laboratory (SHSL)

- Limited Chemistry, Hematology, Blood Bank, and Serology
 - 3.9 million tests/year
- Major provider of Microbiology tests for the system
 - >1 million tests/year
- Major provider of Molecular Dx (ID, Genetic)
 - 400,000 tests/year

SHSL Gastroenteritis Testing

Bacterial cult. (20K 4.4% POS)	Viral (2,500)	Parasites (EIA 5,300)
Campylobacter (407)	Rotavirus-EIA (6.5%)	Cryptosporidium (1.2%)
Salmonella (259)	Norovirus-PCR (10.7%)	Giardia (0.9%)
Shigella (30)		
Aeromonas (78)		
Plesiomonas (13)		
<i>E. coli</i> 0157, STEC (36)		
Vibrio* (5)		
Yersinia* (4)		
<i>C. difficile</i> (12,000) EIA (5.9%) – PCR (25.2%)		

Sutter Health We Plus You

* Needs special request & media

Parasitology!

- **50,000**!!!!! in 2015
- 18,000 in 2018
- O&P?
 - Lacks
 - Sensitivity
 - Automation
 - Coverage
 - Labor intensive (\$\$\$)

Stool Bacterial Culture

- GN-Broth (only if Shiga-toxin ordered)
- BAP
- MAC
- MAC/Sorb
- Salmonella, Shigella (SS)
- Hektoen Enteric (HE)
- Campy-CVA agar

- https://www.google.com/search?q=gn+broth&safe=active&rlz=1C1GGRV_enUS751US751&source=Inms&tbm=isch&sa=X&ved=0ahU
- https://www.tuyenlab.net/2018/02/microbiology-hektoen-enteric-agar.html

https://www.google.com/search?q=macconkey+agar&safe=active&rlz=1C1GGRV_enUS751US751&source=lnms&tbm=isch&sa

Stool Bacterial Culture (Confirmation)

• Shiga-toxin – EIA

- *E. coli* O157, H7 EIA
- Latex agglutination: Wellcolex[®] Color
 - Shigella
 - Salmonella

- <u>https://www.google.com/search?q=wellcolex+shigella&safe=active&rlz=1C1GGRV</u>
- http://www.meridianbioscience.com/diagnostic-products/foodborne/immunocard-stat/immunocard-stat-ehec.aspx
- https://www.thermofisher.com/order/catalog/product/R24250

Culture Independent Diagnostic Tests (CIDT) [Marder EP, et al. MMWR 2017]

https://www.cdc.gov/mmwr/volumes/66/wr/mm6615a1.htm

CIDT's and Pathogen recovery

- Increases the recovery of all bacterial pathogens
 - It's more prominent on vulnerable or hard-to-grow organisms (up to 300%)¹
 - Campylobacter
 - Shigella
- Standard method for viral pathogens
- Superior performance on protozoa parasites

Culture-Independent Diagnostic Test

"V. Which diagnostic tests should be performed when enteric fever or bacteremia is suspected? Recommendation.

17. Culture-independent, including panel-based multiplex molecular diagnostics from stool and blood specimens, and, when indicated, culture-dependent diagnostic testing should be performed when there is a clinical suspicion of enteric fever (diarrhea uncommon) or diarrhea with bacteremia (strong, moderate)."

IDSA take on CIDT's

- Now CIDT's are recommended when:
 - Suspected sepsis
 - Immunocompromised patients
- Results should be interpreted with cautions and/or be confirmed by culture if:
 - non-viable organisms are suspected
 - susceptibility testing is indicated
 - outbreak investigation at Public Health level required
- CIDT's should not be used for patient management or test-ofcure

CIDT benefits

- Advantages:
 - Turnaround time (Days vs. Hours)
 - Easy to perform (Moderate complexity)
 - Reliability (higher sensitivity) 1, 3
 - Reduces ER admission²
 - Reduces length of stay² (LOS)
 - Less dependent on the specimen quality, viability³
 - Recommended by IDSA latest guidelines⁴

- 1. Marder EP, et al MMWR Vol 66 No 15, 2017
- 2. McNabb, K. 2017
- 3. Alexander J, 2018
- 4. Clin Infect Dis. 2017 Nov 29;65(12):e45-e80. IDSA guidelines

CIDT

- Disadvantages:
 - \$ Cost **??**
 - May detect nonviable organisms; NOT appropriate for follow- up or treatment monitoring¹
 - Public Health studies
 - Susceptibility
 - Rarely indicated
 - Ciprofloxacin resistance in 2015²
 - » Salmonella= 4%
 - » Shigella= 2.5%

- 1. Clin Infect Dis. 2017 Nov 29;65(12):e45-e80
- 2. https://wwwn.cdc.gov/narmsnow

CIDT's cost

- Platform cost
 - Instrument
 - Service
- Cost/test
 - Reagents \$\$\$
 - Labor \$
 - MLT vs CLS (California, only?!)
- Reimbursements
 - PAMA
 - Palmetto GBA

- Protecting Access to Medicare Act of 2014
- Stops Clinical Laboratory Fee Schedule (CLFS) rates, and shifted to "Market-Based Pricing".
- Applied to 3500 common lab tests
 - Pay rates at the median of private payer rate
 - Data obtained from 3.6% of labs (some large commercials)
 - 10% 15% decrease/year from 2018 2023

How PAMA affects the reimbursements

Test	2017	2018	СРТ
Stool Culture	\$12.93	\$11.66	87046
O&P	\$12.21 \$10.99		87177
MOL			
GI Pathogen (3-5)	\$175.98	\$158.38	87505
GI Pathogen (6-11)	\$292.77	\$263.49	87506
GI Pathogen(12-25)	\$571.55	\$514.55	87507
<i>M. pneumoniae</i> Quant	\$57.28	\$302.62	87582

www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/ClinicalLabFeeSched/Clinical-Laboratory-Fee-Schedule-Files.html

Palmetto

- **Plametto** is a MAC (Medicare Administrative Contractor)
- Noridian covers California Jurisdiction, and follows MolDx.
- **MolDx** program performs technical assessment of published test data, establishes reimbursements.
 - Then Palmetto determines coverage w/o document review
- GI testing coverage based on IDSA and ACG guidelines.
 - Significantly affect Medicare
 - Medicaid

Palmetto

Palmetto Final LCD Denies Coverage to Large Respiratory Panels

Sep 28, 2018

NEW YORK (GenomeWeb) – Medicare administrative contractor Palmetto GBA finalized local coverage determinations for viral respiratory panels yesterday, determining that the use of small multiplex viral panels in susceptible populations may be reasonable and necessary, but the use of highly multiplexed nucleic acid amplification tests as front-line diagnostics cannot currently be justified.

The measure had been expected after a draft LCD was issued in May 2017 and will now become effective Nov. 12, 2018.

https://www.genomeweb.com/reimbursement/palmetto-final-lcd-denies-coverage-large-respiratory-panels

Palmetto LCD

- Out patients test coverage:
 - Initially required tests to be ordered by ID practitioners, unless there is none available!
 - Will pay but at a lower cost

GI panel Sizes	Patient Presentation	Rate	СРТ
3-5	Healthy Adults	\$158.38	87505
6-11	Recently Hospitalized, or possible C. difficile	\$263.49	87506
12-25	Immunocompromised, or severely ill	\$514.55	87507

How Palmetto effects reimbursements

- Mainly affects Medicare
- Medicaid: not affected yet
- Private payers affect varies and still forming!
 - Blue Cross/Blue Shield: limited coverage
 - Aetna: not affected yet.

How to deal with financial

- Diagnostic testing stewardship
- Tests done as a part of DRG?
 - Usually don't work for GI tests
- Break up larger panels to smaller ones
- See if flexible panels fits your clinical needs and operation
- Work with Biotech companies for creative finance options
- Work with stakeholder and clinicians for considering the bigger picture of impact on patient care
- Consolidate testing platforms, and use automation.
- PLA codes

How to deal with financial – PLA codes

- Proprietary Laboratory Analyses (PLA), a subset of CPT
- Originally created by CMS for LDT's reimbursement
- Biofire® applies them to their GI and RP panels

GI Panels

Test	Instrument	Manufacturer	Targets	Time (h)
Enteric Panel (EP)	VERIGENE [®]	Luminex	9	2
GI Pathogen	xTAG®	Luminex	14	~5
FilmArray [®] GI Panel	Torch®	BioFire Dx	22	1
EBP	BD Max [®]	BD	4	~3
ProGastro	GenProbe®	Hologic	4	4
*EP	Verigene-2	Luminex	25	~2
*GI	ePlex®	Genmark	?	~ 1.5

*FDA approval pending

BioFire FilmArray[®] - GI Panel

Bacteria

Campylobacter C. difficile Plesiomonas Salmonella Y. enterocolitica Vibrio STEC, ETEC, EPEC, EAEC Shigella/EIEC

Parasites

Cryptosporidium Cyclospora E. histolytica Giardia Adenovirus Astrovirus Norovirus Rotavirus Sapovirus

Virus

https://www.biofiredx.com/wp-content/uploads/2016/03/IS-FLM1-MKT-0158-FilmArray-Brochure-Insert.pdf

VERIGENE[®] - Enteric Panel

Bacteria

Campylobacter Group

Salmonella spp.

Shigella spp.

Vibrio Group

Y. enterocolitica

Toxins

Shiga Toxin 1

Shiga Toxin 2

Viruses

Norovirus

Rotavirus

https://www.luminexcorp.com/clinical/our-technology/verigene-nanogrid-technology/

Factors to Consider CIDT's

- Reliability
 - Results accuracy, analytical specificity / sensitivity
 - Vulnerability to contamination
- Ease-of-use
- Ability to detect major pathogens
- Flexibility to match the right-patient/right-test concept
- Avoid over-diagnosis (e.g. *C. difficile*)
- Cost:
 - Capital
 - Per test

Summary

- **CIDT** performance are generally superior to conventional methods
- Over-diagnosis has to be addressed by choosing the right patient, the right test, and the right specimen [e.g. C. difficile]
- Consider testing for parasites only when the clinical features (lack of fever, chronicity...) and exposure links (travel, daycare ...) are established or patient is immunocompromised.
- Financial impacts including, capital, Labor cost and reimbursements are key factors in acquisition of CIDT's for GI pathogens
- PLA codes created a practical avenue for better reimbursements

Thank you!

- Sutter Health Shared Laboratory
 - Kamaljit Sandhu, QA Specialist
 - Melinda Dow, Director Finance
- Jose Alexander, MD (Director, Clinical Microbiologist at Florida Hospital, Orlando)
- Stephanie Ibbotson (Director, Market Access)

